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Growing-and-decaying mode solution to the Davey-Stewartson equation

Masayoshi Tajiri and Takahito Arai
Department of Mathematical Sciences, College of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japa

~Received 15 January 1999!

The growing-and-decaying mode solution to the Davey-Stewartson equation are presented, which describe
the long time evolution of the Benjamin-Feir unstable mode in two dimensions. A solution consisting of a line
soliton and a growing-and-decaying mode shows that the Benjamin-Feir unstable mode does not destroy the
structure of the line soliton. The breather solution and rational growing-and-decaying mode solution are also
presented.@S1063-651X~99!00708-4#

PACS number~s!: 41.20.Jb, 47.10.1g
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I. INTRODUCTION

Benjamin and Feir demonstrated theoretically and exp
mentally that a uniform train of weakly nonlinear deep wa
waves is unstable to infinitesimal modulational perturbatio
@1,2#. The governing equations for the description of the lo
time evolution of the unstable wave train have been stud
by many authors@3–9#. Zakharov@3#, Hasimoto and Ono
@5#, and Davey@6# derived the nonlinear Schro¨dinger~NLS!
equation in the one-dimensional propagation

iut1puxx1r uuu2u50. ~1!

It is well known that the solution is stable to relatively sm
disturbances only ifpr,0, which leads to the same stabilit
condition as that found by Benjamin and Feir. The extens
to the two-dimensional case was examined by Zakharov@3#,
Benny and Roskes@8#, and Devey and Stewartson@9#. The
evolution of a two-dimensional wave packet is described
the Davey-Stewartson~DS! equation. Davey and Stewartso
obtained the stability condition for the two-dimensional~2D!
propagation by using the reduction of the DS equation to
1D-NLS equation and the stability condition of 1D-NL
equation@9#. The time evolution of the solution of the 1D
NLS equation with periodic boundary condition and with
Benjamin-Feir unstable initial condition was studied nume
cally by Lakeet al. @10#. They found that a modulated un
stable wave train achieves a state of maximum modula
and returns to an unmodulated initial state, which is w
known as the Fermi-Pasta-Uram~FPU! recurrence. Yuen and
Ferguson investigated numerically the long time evolution
the solution of the 2D-NLS equation@11#

iut1puxx1quyy1r uuu2u50. ~2!

The FPU recurrence was also observed by them for a w
variety of initial conditions. One of the important features
the solutions of the NLS equation in one and two dimensi
is the reverting of the unstable wave train to its initial sta
The exact solution to describe the nonlinear evolution of
linearly unstable mode was obtained in the Boussinesq e
tion by Yajima @12#. The solution grows exponentially ac
cording to the linear instability at the initial stageu
.egt cos(kx), whereg is the linear growth rate for the wav
numberk which reaches the maximum amplitude after so
finite time and damps to die out at a sufficiently large time
PRE 601063-651X/99/60~2!/2297~9!/$15.00
i-
r
s
g
d

n

y

e

-

n
ll

f

e
f
s
.
e
a-

e
s

u.u08e
2gt cos(kx). Such a growing-and-decaying mode s

lution has also been obtained in the sine-Gordon and
NLS equations@13, 14#. Recently, the intermittent wave
mode solution by which the growing-and-decaying proces
repeated in time was obtained in the Boussinesq equa
@15#. They are all recurrent solutions in the one-dimensio
propagation. However, we conjecture from the numerical
sults of the long time evolution of solution to the 2D-NL
equation that exact recurrent solutions can be also obta
in two-dimensional equations.

In this paper, we investigate the recurrent solutions to
DS equation. The purposes of this study are to show tha~i!
the DS equation has the growing-and-decaying mode s
tion, breather solution, and rational growing-and-decay
mode solution and~ii ! the growing-and-decaying mode solu
tion describes the long time evolution of the Benjamin-F
unstable modes in two dimensions. The stability of the s
ton was examined by Zakharov@16# using the inverse scat
tering transformation method. He obtained solutions wh
describe the nonlinear stage of instability and the nonlin
oscillations of the soliton in the stable case. The stability
the line soliton due to nonlocal disturbances is also inve
gated by using the solution consisting of a line soliton an
growing-and-decaying mode. The solution shows that
linearly unstable mode does not destroy the structure of
line soliton in the same way as the one-dimensional pro
gation described by the 1D-NLS equation@14#.

II. GROWING AND DECAYING MODES

The Davey-Stewartson equation may be written as

iut1puxx1uyy1r uuu2u22uv50,
~3!

pvxx2vyy2pr~ uuu2!xx50,

wherep561, r is constant. Equation~3! with p51 andp
521 are called the DS I and DS II equations, respective
First we investigate the stability of the plane wave of Eq.~3!,

u05u0 exp$ i ~kx1 ly2vt !%,
~4!

v050,

with the dispersion relationv5pk21 l 22ru0
2, by consider-

ing infinitesimal modulational perturbations of the form
2297 © 1999 The American Physical Society
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u5u0ei ~kx1 ly2vt !@11 ê1~ t !exp$ i ~bx81dy8!%

1 ê2~ t !exp$2 i ~bx81dy8!%#,

v5k̂1~ t !exp$ i ~bx81dy8!%1k̂2~ t !exp$2 i ~bx81dy8!%,
~5!

with ê6(t)5 «̂6(0)exp(st) and k̂6(t)5k̂6(0)exp(st),
where

x85x2
]v

]k
t5x22pkt,

y85y2
]v

] l
t5x22l t . ~6!

Substituting Eq.~5! into Eq. ~3!, we have

«̂2* ~0!

«̂1~0!
5

d21pb22 is

d21pb21 is
, ~7!

k̂1~0!5k̂2* ~0!52
pru0

2b2

d22pb2 $«̂1~0!1 «̂2* ~0!%, ~8!

and

s56ud21pb2uA 2ru0
2

d22pb221. ~9!
e
n

The condition in which the plane wave~4! is unstable to
modulational perturbation is given by~i! in the case ofp
51,

2ru0
2.d22b2.0 for r .0,

2ur uu0
2.b22d2.0 for r ,0, ~10!

and ~ii ! in the case ofp521,

2ru0
2.d21b2 for r .0. ~11!

Taking s5ud21pb2uA(2ru0
2)/(d22pb2)21.0 and intro-

ducing a new parameterf̃,

f̃52 sin21SAd22pb2

2ru0
2 D .0, ~12!

we have

«̂2~0!5H 2 «̂1* ~0!e2 i f̃ for d21pb2.0,

2 «̂1* ~0!ei f̃ for d21pb2,0,
~13!

where 0,f̃,p has been assumed. Then,u and v are ex-
pressed by
u5H u0ei ~kx1 ly2vt !@11 ẽ~12e2 i f̃!est cos~bx81dy81 ũ !# for d21pb2.0,

u0ei ~ ix1 ly2vt !@11 ẽ~12ei f̃!est cos~bx81dy81 ũ !# for d21pb2,0,

~14!

~15!

whereẽ is a small real number andũ is an arbitrary real number. If we takes52ud21pb2uA(2ru0
2)/(d22pb2)21,0,

«̂2~0!5H 2 «̂1* ~0!ei f̃ for d21pb2.0,

2 «̂1* ~0!e2 i f̃ for d21pb2,0,
~16!

and

u5H u0ei ~kx1 ly2vt !@11 ẽ8~12ei f̃!est cos~bx81dy81 ũ !# for d21pb2.0,

u0ei ~kx1 ly2vt !@11 ẽ8~12e2 i f̃!est cos~bx81dy81 ũ !# for d21pb2,0,

~17!

~18!
he
the
ble

n
re
which is a damping mode solution.
Here, it should be noted that the DS equation~3! is re-

duced to the 1D-NLS equation when we assumeu to be
independent ofx and when we putv50 ~andy˜x!. Under
the assumption, Eq.~9! becomess25d2(2ru0

22d2), which
is in agreement with the well known growth rate of th
Benjamin-Feir instability in one-dimensional propagatio
 .

Therefore, we can considers given by Eq.~9! with a plus
sign as the growth rate of the Benjamin-Feir instability in t
two-dimensional case. It is very interesting to note that
solutions described by the nonlinear evolution of unsta
modes can be obtained from theN-soliton solution of Sat-
suma and Ablowitz@17#. We shall show that such a solutio
can be constructed from the two-soliton solution with pu
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imaginary wave numbers and complex frequencies.
The two-soliton solution may be written as@17#

u5u0ei ~kx1 ly2vt !
g

f
,

v522p~ log f !xx , ~19!

with

f 511eh11eh21Deh11h2,

g511eh11 if11eh21 if21Deh11h21 i ~f11f2!, ~20!

where

v5pk21 l 22ru0
2, ~21!

h j5K jx1L jy2V j t1h j
0, ~22!

sin2
f j

2
5

pKj
22L j

2

2ru0
2 , ~23!

V j52pkKj12lL j2~pKj
21L j

2!cot
f j

2
~ j 51,2!.

~24!

Taking wave numbers and frequencies pure imaginary
complex, respectively, as follows:

K15 ib, L15 id, V15V1 ig,

K252 ib, L252 id, V25V2 ig,

f15f25f:real,
d

h1
05h2

0* , eh1
0
5eh2

0*
52

1

2
e2s̄1 iu, ~25!

we have the following dispersion relation andD @in Eq. ~20!#

sin2
f

2
5

d22pb2

2ru0
2 .0, ~26!

V5~d21pb2!cot
f

2
, ~27!

g52pkb12ld, ~28!

D5
2

11cosf
.1. ~29!

Then, the solution is given by

u5u0ei ~kx1 ly2vt1f!@AD cosh~Vt1s2 if!

2cos~bx1dy2gt1u!#@AD cosh~Vt1s!

2cos~bx1dy2gt1u!#21,

v522pb2
AD cosh~Vt1s!cos~bx1dy2gt1u!21

@AD cosh~Vt1s!2cos~bx1dy2gt1u!#2
,

~30!

where s5s̃1 log(2/AD). The existence condition for the
nonsingular solution~30! is given byD.1, which is satisfied
for 0,(d22pb2)/(2ru0

2),1 ~for realf! which is in agree-
ment with the conditions~10! and ~11! in which the plane
wave~4! is unstable to modulational perturbation. This so
tion grows exponentially at initial stage (t52T1t8,T@1)
as follows:
(

u5u0ei ~kx1 ly2vt12f!@11e~12e2 if!eVt8 cos~bx1dy2gt1u!#,
~31!

v522pb2eeVt8 cos~bx1dy2gt1u! for V.0

or

u5u0ei ~kx1 ly2vt !@11«~12eif!e2Vt8 cos~bx1dy2gt1u!#,
~32!

v522pb2«e2Vt8 cos~bx1dy2gt1u! for V,0,

where t85t1T, e5(2/AD)e2VT1s!1, and«5(2/AD)eVT2s!1, achieves a state of maximum modulation and finallyt
5T8@1) returns exponentially to the initial state as follows:



2300 PRE 60MASAYOSHI TAJIRI AND TAKAHITO ARAI
u5u0ei ~kx1 ly2vt !@11e8~12eif!e2Vt9 cos~bx1dy2gt1u!#,
~33!

v522pb2e8e2Vt9 cos~bx1dy2gt1u! for V.0

or

u5u0ei ~kx1 ly2vt12f!@11«8~12e2 if!eVt9 cos~bx1dy2gt1u!#,
~34!

v522pb2«8eVt9 cos~bx1dy2gt1u! for V,0,
th
ft
re
th
s

.

-

rd
be

on

he
where t95t2T8, e85(2/AD)e2VT82s, and «8

5(2/AD)eVT81s. Typical time evolutions of this solution
are shown in Figs. 1 and 2. These figures show that
solution reaches a state of maximum modulation and a
reaching maximum modulation, demodulates and finally
turns to an unmodulated state. We call this solution
growing-and-decaying mode solution hereafter. It is intere
ing to note that the growth rateuVu and frequencyg are in
agreement with the growth rate~9! with a plus sign and the
frequency of modulational perturbation,b(]v/]k)
1d(]v/]t), given by Eq.~6!, respectively. Comparing Eqs
~31! and ~33! with Eqs. ~15! and ~18! we see that the
asymptotic solutions~31! and ~33! are in complete agree
ment with the growing eigenfunction~15! and damping
mode function~18!, respectively. Therefore, we can rega
the growing-and-decaying mode solution as that descri
by the nonlinear evolution of the unstable mode.

Next, we consider a solution consisting of a line solit
and growing-and-decaying mode, which is given by

f 5cosh~Vt1s1!1uLuej cosh~Vt1s2!2
1

AD

3~11Lre
j!cos~h!1

Li

AD
ej sin~h!, ~35!

g5u0ei ~kx1 ly2vt1f1!Fcosh~Vt1s12 if1!

1uLuej1 if2 cosh~Vt1s22 if1!2
1

AD

3~11Lre
j1 if2!cos~h!1

Li

AD
ej1 if2 sin~h!G ,

~36!

where
e
er
-
e
t-

d

j5kx1ry2Gt1s3 ,

h5bx1dy2gt1u,

sin2
f1

2
5

d22pb2

2ru0
2 .0,

sin2
f2

2
5

pk22r2

2ru0
2 .0,

V5~pb21d2!cot
f1

2
,

g52pkb12ld,

G52pkk12lr2~pk21r2!cot
f2

2
,

D5
2

11cosf1
,

L5Lr1 iL i

5
2ru0

2 sin~f1/2!sin~f2/2!cos@~f12f2!/2#2i ~pbk2dr!

2ru0
2 sin~f1/2!sin~f2/2!cos@~f11f2!/2#2i ~pbk2dr!

,

s12s25 loguLu, ~37!

ands3 andu are arbitrary constants.
The solutions long before and long after growth of t

growing-and-decaying mode are expressed by
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FIG. 1. The time evolution of the growing-and-decaying mode solution to the DS equation withp51, r 51; ~a! t521.5; ~b! t521; ~c!
t520.5; ~d! t50; ~e! t50.5; ~f! t51. We choosek51, l 51, b51, andd5&. The mode grows with the linear growth rate of th
Benjamin-Feir instability at initial stage@~a! and~b!# takes the maximum modulation att50 Fig. @~d!# and then demodulates and returns
the unmodulated state. In this figure,x, y, andu are all dimensionless.
de

ly.

nd
e-
nd
ar
oli-

the
ws
ate
u5u0ei ~kx1 ly2vt12f1!
11ej12~s12s2!1 if2

11ej12~s12s2! ,

v52
pk2

2
sech2

j12~s12s2!

2
, ~38!

and

u5u0ei ~kx1 ly2vt !
11ej1 if2

11ej ,

v52
pk2

2
sech2

j

2
, ~39!
respectively. The effect of the growing-and-decaying mo
on the line soliton is only the phase shifts22f1 and 2(s2

2s1) of the plane wave and the line soliton, respective
We can obtain the one-line soliton andN-growing-and-
decaying mode solution from the solution of Satsuma a
Ablowitz @17#. The solution shows that the growing and d
caying mode damps to die out at sufficiently large time a
only the line soliton remains finally. Therefore, these line
unstable modes do not destroy the structure of the line s
ton. However, it is not known at present whether or not
infinitesimal perturbation with continuous spectrum gro
into a finite amplitude and then decays into the initial st
and does not destroy the structure of the line soliton.
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FIG. 2. The time evolution of the solution constituting of a line soliton and growing-and-decaying mode to the DS equationp
51, r 51; ~a! t520.2; ~b! t50.4; ~c! t51; ~d! t51.6; ~e! t52.2; ~f! t52.8. We choosek51, l 51, b51, d5&, k51, andr50. The
amplitudes of the growing-and-decaying mode are very small in~a!. The growing-and-decaying mode takes the maximum amplitude in~d!
and almost damp to die out in~f! until only the line soliton finally remains.
d
n

n

-
by
III. BREATHER SOLUTION
Next, we examine an another type of the growing-an

decaying mode solution, which is a breathing localized pla
pulse. The dispersion relation~23! shows that even ifK j and
L j are real, we have to takef j pure imaginary for the
-
e

case (pKj
22L j

2)/2ru0
2,0. To obtain an analytical expressio

for the breathing wave solution, we setK15K25a, L1
5L25b andf152f25 iF in Eq. ~22!, wherea andb are
real. Then, frequenciesV1 andV2 are complex and are com
plex conjugate with each other and the solution is given
u5u0ei ~kx1 ly2vt !
AD coshj2coshF cos~gt1u!1 i sinhF sin~gt1u!

AD coshj2cos~gt1u!
,

v522pa2D
12~1/AD !coshj cos~gt1u!

@AD coshj2cos~gt1u!#2
, ~40!
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FIG. 3. The breather solution to the DS equation withp51, r 51; ~a! t526; ~b! t523; ~c! t50; ~d! t53; ~e! t56; ~f! t512. We
choosek51, l 51, a51/2, andb51/&. This solution shows that a plain wave packet propagates with breathing.
ce

ing
ally
ion
where

j5ax1by2Vt1s,

sinh2
F

2
5

b22pa2

2ru0
2 .0,

V52~pka1 lb !,

g5~b21pa2!A 2ru0
2

b22pa2 11,
D511
b22pa2

2ru0
2 , ~41!

wheres and u are arbitrary phase constants. The existen
condition for the nonsingular solution~40! is given by

b22pa2

2ru0
2 .0, ~42!

which comes fromD.1. A typical time evolution of this
solution is shown in Fig. 3, which seems to be a breath
plane wave packet. This breather solution is an exponenti
localized entity in the propagating direction and as a funct
of (gt1u) is periodic.
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FIG. 4. The time evolution of the rational growing-and-decaying mode solution to the DS equation withp51, r 51; ~a! t520.8; ~b!
t520.4; ~c! t50; ~d! t50.4. We choosek51, l 51, c51/2, andd51/&. This solution starts from the unmodulated state. A state
maximum modulation is reached att50. After reaching maximum amplitude, the solution starts to damp and finally returns to the
unmodulated state.
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IV. RATIONAL GROWING-AND-DECAYING MODE
SOLUTION

In this section, we consider the long wave limit of th
growing-and-decaying mode solution~30!. PuttingK15K2*

5 i«c, L15L2* 5 i«d, h1
05h2

0* 5«( i ũ82s̃8)1 ip, and tak-
ing the limit as«˜0, we have

f15f2562«Ad22pc2

2ru0
2 5«f̃,

V56«~d21pc2!A 2ru0
2

d22pc25«Ṽ,

g5«~2pkc12ld !5«g̃,

D511«2
d22pc2

2ru0
2 1O~«3!511«2a21O~«3! ~43!

and

f 5«2~j21h21a2!1O~«3!, ~44!
g5u0ei ~kx1 ly2vt !@«2$j21h21a224a~a6 ih!%1O~«3!#,

~45!

where j5cx1dy2g̃t1 ũ8, h5Ṽt1s̃8. Substitution of
Eqs.~44! and~45! into Eq.~19! gives the following solution:

u5u0ei ~kx1 ly2vt !H 12
4a~a6 ih!

a21h21j2J ,

v524pc2
a21h22j2

~a21h21j2!2 . ~46!

This nonsingular solution extends in one direction and
localized in the orthogonal direction and in time as shown
Fig. 4. This solution is the rational growing and decayi
mode which decays algebraically at large distance and ti
It is very interesting to note that the growing-and-decay
mode solution and the breather solution can be constru
as the imbricate series of rational growing-and-decay
modes in much the same way as the 1D-NLS equation@14#.
In this sense, we can regard the rational growing-a
decaying mode as the fundamental constituent of recur
wave solutions.
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V. DISCUSSION

We have shown that the DS equation has growing
decaying mode, breather, and rational growing-and-deca
mode solution. The nonlinear evolution of the monoch
matic infinitesimal perturbation with a Benjamin-Feir u
stable condition is described by the growing-and-decay
mode solution. The infinitesimal perturbation composed
discrete wave numbers grows a finite perturbation and t
decays into the initial state, which is described by t
N-growing-and-decaying mode solution. These unsta
modes do not destroy the structure of the line soliton, wh
is described by the solution consisting of the line soliton a
N-growing-and-decaying modes. It is not known whether
not these recurrent phenomena actually occur for the pe
bation with a continuous spectrum. However, the existe
of the rational growing-and-decaying mode solution sho
. A

n

d
g

-

g
f
n

e
le
h
d
r
r-
e
s

the possibility that such recurrent phenomena also occur
the perturbation with a continuous spectrum. Here it sho
be noted that the nonlinear development of localized
stable modes on the line soliton cannot be described by
line soliton and N-growing-and-decaying mode solution
Such a stability problem on the line soliton may be describ
by the soliton resonant solution between the line soliton a
the periodic soliton. Recently, the existence of resonant
teraction between they-periodic soliton and the line soliton
was shown in the DS I equation@18#. The quasiresonant stat
consists of the resonant line soliton and small disturbanc
we choose parameters close to the resonant conditions. F
this fact, such a stability problem on the line soliton may
treated by using the solutions of the periodic soliton re
nance between the line soliton and the periodic soliton. S
investigations are in progress and will be presented e
where.
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