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Growing-and-decaying mode solution to the Davey-Stewartson equation
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The growing-and-decaying mode solution to the Davey-Stewartson equation are presented, which describe
the long time evolution of the Benjamin-Feir unstable mode in two dimensions. A solution consisting of a line
soliton and a growing-and-decaying mode shows that the Benjamin-Feir unstable mode does not destroy the
structure of the line soliton. The breather solution and rational growing-and-decaying mode solution are also
presented[S1063-651X99)00708-4

PACS numbegs): 41.20.Jb, 47.16:g

. INTRODUCTION u=uje " coskx). Such a growing-and-decaying mode so-
lution has also been obtained in the sine-Gordon and 1D-
Benjamin and Feir demonstrated theoretically and experinNLS equations[13, 14. Recently, the intermittent wave
mentally that a uniform train of weakly nonlinear deep watermode solution by which the growing-and-decaying process is
waves is unstable to infinitesimal modulational perturbationﬁ?epeated in time was obtained in the Boussinesq equation
[1,2]. The governing equations for the description of the long[15]. They are all recurrent solutions in the one-dimensional
time evolution of the unstable wave train have been studie@ropagation. However, we conjecture from the numerical re-
by many authord3-9]. Zakharov[3], Hasimoto and Ono sults of the long time evolution of solution to the 2D-NLS
[5], and Davey[6] derived the nonlinear Schdinger(NLS)  equation that exact recurrent solutions can be also obtained
equation in the one-dimensional propagation in two-dimensional equations.
In this paper, we investigate the recurrent solutions to the
DS equation. The purposes of this study are to show(that
| the DS equation has the growing-and-decaying mode solu-
tion, breather solution, and rational growing-and-decaying
rgnode solution andii) the growing-and-decaying mode solu-
tion describes the long time evolution of the Benjamin-Feir
unstable modes in two dimensions. The stability of the soli-
)}on was examined by Zakhar¢¥6] using the inverse scat-

iU+ pug+r|ul2u=0. (1)

It is well known that the solution is stable to relatively smal
disturbances only ipr<0, which leads to the same stability
condition as that found by Benjamin and Feir. The extensio
to the two-dimensional case was examined by Zakh&Bgv

Benny and Roskeg3], and Devey and Stewarts¢@]. The

evolution of a two-dimensional wave packet is described by ™" . : . .
the Davey-StewartsofDS) equation. Davey and Stewartson tering transformat_lon method. Hg obta}|_ned solutions wh|ch
obtained the stability condition for the two-dimensiof@D) ~ describe the nonlinear stage of instability and the nonlinear
propagation by using the reduction of the DS equation to th@scillations of the soliton in the stable case. The stability of

1D-NLS equation and the stability condition of 1D-NLS the line soliton due to nonlocal disturbances is also investi-
equation[9]. The time evolution of the solution of the 1D- gated by using the solution consisting of a line soliton and a

NLS equation with periodic boundary condition and with a?rowill'lg-and-dtlecaying mode. The SOlquE shows thatftf;]e
Benjamin-Feir unstable initial condition was studied numeri- inearly unstable mode does not destroy the structure of the

cally by Lakeet al. [10]. They found that a modulated un- In€ soliton in the same way as the one-dimensional propa-
stable wave train achieves a state of maximum modulatio§@tion described by the 1D-NLS equatidtd].

and returns to an unmodulated initial state, which is well

known as the Fermi-Pasta-UrgfPU) recurrence. Yuen and Il. GROWING AND DECAYING MODES

Ferguson investigated numerically the long time evolution of 1,4 Davey-Stewartson equation may be written as

the solution of the 2D-NLS equatidi 1]
H 2 —
iU+ Pl quyy+r|uj2u=0. () Ut PUoct Uy trlufu=2uv=0, 3
2y _

The FPU recurrence was also observed by them for a wide PV Vyy = Pr(u[9)=0.

variety of initial conditions. One of the important features Ofwherep= +1,r is constant. Equatiof8) with p=1 andp

the solutions of the NLS equation in one and two dimensions. _ { e called the DS | and DS II equations, respectively.

is the reverting of the unstable wave train to its initial state.; ot \ve investigate the stability of the plane wave of B3
The exact solution to describe the nonlinear evolution of the ’

linearly unstable mode was obtained in the Boussinesq equa- u®=ug expli(kx+ly — wt)},
tion by Yajima[12]. The solution grows exponentially ac- (4)
cording to the linear instability at the initial stage vP=0,

=e” coskx), wherey is the linear growth rate for the wave
numberk which reaches the maximum amplitude after somewith the dispersion relatiom=pk?+12—ru3, by consider-
finite time and damps to die out at a sufficiently large time adng infinitesimal modulational perturbations of the form
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u=upe' ®*Y=eir1+ & (texpli(Bx’ + dy")} The condition in which the plane wav@) is unstable to
. . modulational perturbation is given h) in the case ofp
+e_(Hexp{—i(Bx' +8y')}], =1,
v=k (expi(Bx' +8y")}+ k,(t)exp{—i(,Bx’Jréy’)}&,S) 2ru§>52—/82>0 for r>0,
with €. (t)=e.(0)expEt) and k.(t)=k+(0)exppt),
where 2|r|ud>pB%—5°>0 for r<o, (10)
Jo and(ii) in the case op=—1,
X' =x— Wt=x—2pkt,
2ruz> 5%+ p? for r>0. (11
, Jw
y'=y- rt=x-2t (6)  Taking o=|6%+pB?|\(2ru3)/(6°—pB%)—1>0 and intro-

ducing a new parametes,
Substituting Eq(5) into Eq. (3), we have

25 (0) S+ pa—i ~ w1 [5°—pB®
Z()_ TpB—io o ) 23|n( o >0, (12)

L(0)  P+ppitic’

) s we have
ru
f<+(0>=kt<0>=—;_—fﬁz{é+<0>+ét(0>}, ®)

. —é+(0)e*‘$ for 6°+ppB>>0,
and e (0)= y

—&*(0)e'? for 6°+pp2<0,

[ 2ru? 5
_ 2 2 0o where 0< <7 has been assumed. Thanandv are ex-
o=+ ph] 52— pp? 1. © pressed by

(13

Uge R =1 42(1— e 1%)et cog B’ + Oy +8)] for 8%+ pp>0, (14
u= - ~ ~
uge! XV =etr1 +g(1—e'%)e’t cog Bx' + 8y’ +6)] for 82+ pB2<0, (15)

wheree is a small real number andl is an arbitrary real number. If we take= — | 5%+ p?|\/(2ru3)/(6°— pB?) — 1<0,

§(0)=[ —é+(0)e“~f’~for 8+ ppB>>0,

. 16
—8*(0)e '? for 6%+ pp2<0, (16
and
uoei(k’““'y‘“’t)[l+~e’(1—ei:”)e"t cog Bx'+ 8y’ +8)] for 82+pB>>0, (17)
u= . ~ -
uge! Y=o+ (1—e '%)e’t cog Bx' + 8y’ + 0)] for &%+ pp?<0, (18)
|
which is a damping mode solution. Therefore, we can consider given by Eq.(9) with a plus

Here, it should be noted that the DS equati@his re-  sign as the growth rate of the Benjamin-Feir instability in the
duced to the 1D-NLS equation when we assumé& be  two-dimensional case. It is very interesting to note that the
independent ok and when we put =0 (andy—x). Under  solutions described by the nonlinear evolution of unstable
the assumption, Eq9) becomesr?= 6?(2ruj— 6%), which  modes can be obtained from tiésoliton solution of Sat-
is in agreement with the well known growth rate of the suma and AblowitZ17]. We shall show that such a solution
Benjamin-Feir instability in one-dimensional propagation.can be constructed from the two-soliton solution with pure
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imaginary wave numbers and complex frequencies. o o o o 1
The two-soliton solution may be written §%7] m=n, , en=en =- Ee_””’, (25
_ g we have the following dispersion relation abdin Eq. (20)]
u= uoel(kxﬂyfwt)_,
L, b —pp’
———>
v=—2p(10g f )y, (19 St 5= —5rz 0 (26)
with
Q=(5%+pp? ¢ 2
f:1+e771+e712+De771+772' _( +pﬂ )COtEv ( 7)
_ +ig +ig +noti(pq+ do)
g=1+en"' P14 enté24 Demnt 2 e1T %) (20) y=2pkB+214, 29)
where
2
w=pk2+12—ru3, (21) D=m>1- (29
7= Kx+Ly—Qt+ 77?, (22) Then, the solution is given by
¢, pKI-L? 23 u=uge' Y=ot D coshi Ot +o—i )
2 2rug — cog Bx+ 8y — yt+ 6)][ YD cosHQt+ o)
—cog Bx+ Sy—yt+6)] 7%,
T
Q;=2pkK;+2IL; = (pKf+L)cot" (j=1.2).
(29 5 \/Scosr(QH— o)cog Bx+ dy—yt+6)—1
V= ’
Taking wave numbers and frequencies pure imaginary and [ /D cosiQt+ o) —cog Bx+ dy — yt+ 6)]?
complex, respectively, as follows: (30
. _ _ where o=5+log(2//D). The existence condition for the
Ki=ig, Li=is, Q1=0+iy, nonsingular solutioi30) is given byD > 1, which is satisfied
for 0< (82— pp?)/(2ru3)<1 (for real ¢) which is in agree-
Ko=—iB, L,=—id, Q,=Q—iy ment with the condition$10) and (11) in which the plane
' ’ ' wave (4) is unstable to modulational perturbation. This solu-
tion grows exponentially at initial stage=€ —T+t",T>1)
b1= o= ¢p:real, as follows:

u=upe WY —0t+20)r1 4 ¢(1—-e %) cog Bx+ Sy — yt+ 6)],
(31)

v=—2pBlee™ cog Bx+ Sy—yt+6) for Q>0
or
U=uge V=14 g(1—e ) e cog Bx+ Sy — yt+ )],
(32
v=—2pBlee ™M cogBx+ dy—yt+60) for Q<0,

wheret’=t+T, e=(2/J/D)e ?T"?<1, ande=(2/\D)e?T <1, achieves a state of maximum modulation and finally (
=T'>1) returns exponentially to the initial state as follows:
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u=uge V=014 ¢/ (1—e' ¥ e 2 cog Bx+ Sy — yt+ )],

(33
v=—2ppB2e'e ™ cog Bx+ Sy — yt+6) for Q>0
or
u=uge (xF=ot+26)11 4 o/ (1—e %)™ cog Bx+ Sy — yt+ )],
(34)
v=—2pB2’'e™ cog Bx+ Sy— yt+6) for Q<0,
|
where t'=t-T', €=(2/\D)e 77  and &’ é=kx+py—Tt+os,
=(2/\/5)em'*”. Typical time evolutions of this solution
are shown in Figs. 1 and 2. These figures show that the
solution reaches a state of maximum modulation and after 7= pBX+oy—yt+0,
reaching maximum modulation, demodulates and finally re-
turns to an unmodulated state. We call this solution the
growing-and-decaying mode solution hereafter. It is interest- ¢y P—pp?
ing to note that the growth rat€)| and frequencyy are in SIf—>-= W>Ov
agreement with the growth rat®) with a plus sign and the 0
frequency of modulational perturbation,8(dw/dk)
+ 8(dwl dt), given by Eq.(6), respectively. Comparing Eqs. & 2 2
(31) and (33 with Egs. (15) and (18) we see that the s L2 _ PP,
. . . 2 2ru? '
asymptotic solutiong31) and (33) are in complete agree- Ug
ment with the growing eigenfunctionil5) and damping
mode function(18), respectively. Therefore, we can regard
the growing-and-decaying mode solution as that described 5w b1
by the nonlinear evolution of the unstable mode. Q=(pp°+ 5%)cot—=,
Next, we consider a solution consisting of a line soliton
and growing-and-decaying mode, which is given by
v=2pkB+216,
f HQt+o,) +|L|ef coshHQt+ o) ! é
=co0s e’ cos - —
71 72 \/5 F=2pkk+2|p—(pK2+p2)COt72,
Li .
X (1+L,ef)cog )+ —e’sin(7y), (35)
VD 5
D= 1+cosep;’
g=uge' KXY =t o)l cos Ot + oy —i ) L=L,+ilL,
L6 cosH s oy i) 2ru sinl ¢/2)sinl ¢,/2)004 (1~ $2)/2]-1(pBK— 3p)
e cos —ig)— — = - . - ,
NG 21U SN 4oT2)SiN $212)C08 (1 + G121 (PBr— op)
X (1+L,ef"%2)coq 7)+ ies”wzsin( 7)
\/5 o,—o,=log|L|, (37

(36)
and oz and 6 are arbitrary constants.

The solutions long before and long after growth of the

where growing-and-decaying mode are expressed by
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FIG. 1. The time evolution of the growing-and-decaying mode solution to the DS equatiopwithr=1; (a) t=—1.5; (b) t=—1; (c)
t=-0.5; (d) t=0; (e) t=0.5; (f) t=1. We choos&k=1, |=1, 8=1, and §=v2. The mode grows with the linear growth rate of the
Benjamin-Feir instability at initial stagea) and(b)] takes the maximum modulation &0 Fig.[(d)] and then demodulates and returns to
the unmodulated state. In this figure,y, andu are all dimensionless.

E+2(o1—0p)t+id
(kx+|y7wt+2¢z1)l+e v i

u:qul 1+e§+2(0'l*0'2) 1
2 o
K +2(o,— 0
v=—p75ecﬁ w (39
and
Etig
u=u ei(kx+|y7wt)1+e I §
0 1+ef '
2
K
v:—%secﬁ g (39

respectively. The effect of the growing-and-decaying mode
on the line soliton is only the phase shift2¢,; and 2,
—o,) of the plane wave and the line soliton, respectively.
We can obtain the one-line soliton ard-growing-and-
decaying mode solution from the solution of Satsuma and
Ablowitz [17]. The solution shows that the growing and de-
caying mode damps to die out at sufficiently large time and
only the line soliton remains finally. Therefore, these linear
unstable modes do not destroy the structure of the line soli-
ton. However, it is not known at present whether or not the
infinitesimal perturbation with continuous spectrum grows
into a finite amplitude and then decays into the initial state
and does not destroy the structure of the line soliton.
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FIG. 2. The time evolution of the solution constituting of a line soliton and growing-and-decaying mode to the DS equatipn with
=1,r=1;(@t=-0.2;(b)t=0.4; (c) t=1; (d) t=1.6; (e) t=2.2; (f) t=2.8. We choos&=1, =1, B=1, 6=v2, k=1, andp=0. The
amplitudes of the growing-and-decaying mode are very smdl)inThe growing-and-decaying mode takes the maximum amplitude) in
and almost damp to die out iff) until only the line soliton finally remains.

Ill. BREATHER SOLUTION _ case pK?—L?)/2ru§<0. To obtain an analytical expression
Next, we examine an another type of the growing-andfor the breathing wave solution, we s&;=K,=a, L,
decaying mode solution, which is a breathing localized plane=_,=b and ¢;=— ¢,=i® in Eq. (22), wherea andb are
pulse. The dispersion relatid@3) shows that even iK; and  real. Then, frequencied, and(), are complex and are com-
L; are real, we have to take); pure imaginary for the plex conjugate with each other and the solution is given by

|

: VD coshé—coshd cog yt+ 6) +i sinhd sin(yt+ )
JD coshé—cog yt+ 6)

u= uoei(kx+|y—mt

1—(1/\/D)coshé cog yt+ 6)
[ D coshé—cog yt+6)]2

2

v=-—2pa (40)




PRE 60 GROWING-AND-DECAYING MODE SOLUTION TO THE . .. 2303

FIG. 3. The breather solution to the DS equation with1l,r=1; (a) t=—6; (b) t=—3; (c) t=0; (d) t=3; (¢) t=6; (f) t=12. We
choosek=1, =1, a=1/2, andb=1#?2. This solution shows that a plain wave packet propagates with breathing.

where

E=ax+by—Qt+o,

QO =2(pka+lb),

2rug
Y:(b2+ paz) \/bz—pa2+l’

b2—pa®

D=1+-——p
2rug

, (41)

where o and 6 are arbitrary phase constants. The existence
condition for the nonsingular solutio@0) is given by

b~ Ioaz>0 (42)
2rug ’

which comes fromD>1. A typical time evolution of this
solution is shown in Fig. 3, which seems to be a breathing
plane wave packet. This breather solution is an exponentially
localized entity in the propagating direction and as a function
of (yt+ 0) is periodic.
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|al

FIG. 4. The time evolution of the rational growing-and-decaying mode solution to the DS equatiop=adthr =1; (a) t=—0.8; (b)
t=—0.4; (c) t=0; (d) t=0.4. We choos&=1, |=1, c=1/2, andd=1A2. This solution starts from the unmodulated state. A state of

maximum modulation is reached &t 0. After reaching maximum amplitude, the solution starts to damp and finally returns to the initial
unmodulated state.

IV. RATIONAL GROWING-AND-DECAYING MODE

SOLUTION g= uoei(kx+|y_“’t)[82{§2+ 7°+ a’—Ada(a=i n)}+ 0O(e3)],

In this section, we consider the long wave limit of the (45)
growing-and-decaying mode solutidB0). PuttingK,=K3

=isc, Ly=Li=ied, n0=73 =¢(i0’'~5')+im, and tak- where g=cx+dy—-Jt+9', »=Qt+3'. Substitution of

ing the limit ase—0, we have Egs.(44) and(45) into Eq.(19) gives the following solution:
d’—pc® - da(a=i
_ B *in)
— =+ - = _ i(kx+ly —wt) _

$1= =+ 2¢ 2 g, u=uge {1 prcapeawy=ig
2ru? ~ 24 2 g2

_ 2 2 o _ a’tn—§

O=*g(d“+pc )\/dz_pcz—sﬂ, V:—4pc2(a2+ T E) (46)

~ This nonsingular solution extends in one direction and is
y=e(2pke+2ld)=¢7, localized in the orthogonal direction and in time as shown in

Fig. 4. This solution is the rational growing and decaying
5 mode which decays algebraically at large distance and time.
+0(s3)=1+£2a2+0(£%) (43 It is very interesting to note that the growmg-and-decaylng
mode solution and the breather solution can be constructed

as the imbricate series of rational growing-and-decaying

and modes in much the same way as the 1D-NLS equdtigih

In this sense, we can regard the rational growing-and-

decaying mode as the fundamental constituent of recurrent
f=e2(&2+ n°+ a®)+0(e%), (44)  wave solutions.

d?>—pc

D=1+e?———5—
“ 2
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V. DISCUSSION the possibility that such recurrent phenomena also occur for

. . he perturbation with a continuous spectrum. Here it should
We have shown that the DS equation has growing anghe poteq that the nonlinear development of localized un-

decaying mode, breather, and rational growing-and-decayingiapie modes on the line soliton cannot be described by the
mode solution. The nonlinear evolution of the monochro-jjne soliton and N-growing-and-decaying mode solution.
matic infinitesimal perturbation with a Benjamin-Feir un- gych a stability problem on the line soliton may be described
stable condition is described by the growing-and-decayingy the soliton resonant solution between the line soliton and
mode solution. The infinitesimal perturbation composed ofhe periodic soliton. Recently, the existence of resonant in-
discrete wave numbers grows a finite perturbation and theteraction between thg-periodic soliton and the line soliton
decays into the initial state, which is described by thewas shown in the DS | equati¢t8]. The quasiresonant state
N-growing-and-decaying mode solution. These unstableonsists of the resonant line soliton and small disturbance, if
modes do not destroy the structure of the line soliton, whichwe choose parameters close to the resonant conditions. From
is described by the solution consisting of the line soliton andhis fact, such a stability problem on the line soliton may be
N-growing-and-decaying modes. It is not known whether ortreated by using the solutions of the periodic soliton reso-
not these recurrent phenomena actually occur for the perturance between the line soliton and the periodic soliton. Such
bation with a continuous spectrum. However, the existencénvestigations are in progress and will be presented else-
of the rational growing-and-decaying mode solution showswhere.
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